HCI-GPU-L4=: What Is This Cisco GPU Module, How Does It Optimize AI/ML, and When to Choose It?



​Understanding the HCI-GPU-L4= in Cisco’s HyperFlex Architecture​

The ​​HCI-GPU-L4=​​ is a ​​pre-configured GPU accelerator module​​ for Cisco’s ​​HyperFlex HX240c M6 and HX220c M6 nodes​​, featuring ​​NVIDIA L4 Tensor Core GPUs​​. Designed for ​​AI inference, media processing, and mid-scale virtualization​​, this module balances performance and power efficiency, delivering 72 teraflops of FP32 compute with 24 GB GDDR6 memory. Unlike general-purpose GPUs, it’s optimized for Cisco’s ​​HyperFlex Data Platform (HXDP)​​, enabling seamless scaling of GPU-accelerated workloads in hyperconverged environments.


​Technical Specifications and Performance Metrics​

  • ​GPU Model​​: ​​NVIDIA L4​​ (Ada Lovelace architecture, 58 streaming multiprocessors, 3rd-gen RT cores).
  • ​Memory​​: 24 GB GDDR6 (300 GB/s bandwidth, ECC support).
  • ​Compute Performance​​: ​​72 TFLOPS FP32​​, ​​274 TFLOPS Tensor (FP8/INT4)​​.
  • ​Power Consumption​​: 72W (per GPU), compliant with Cisco’s ​​EnergyWise 3.0​​ standards.

Cisco’s benchmarks show the HCI-GPU-L4= achieves ​​2.3x higher inferencing throughput​​ than the HCI-GPU-T4-M6= (NVIDIA T4) in BERT-Large NLP models, leveraging ​​NVIDIA’s Multi-Instance GPU (MIG)​​ for workload isolation.


​Key Use Cases and Workload Optimization​

  1. ​AI/ML Inference​​:
    Supports 80+ concurrent AI models (e.g., GPT-3.5, ResNet-152) using ​​NVIDIA Triton Inference Server​​ with MIG partitioning.

  2. ​Media Streaming & Transcoding​​:
    Handles 40+ 8K HDR video streams (AV1/HEVC) at 60 FPS via ​​NVENC/NVDEC​​ hardware encoding.

  3. ​Mid-Scale VDI​​:
    Powers 100+ 4K virtual desktops (VMware Horizon/Citrix) with ​​NVIDIA Virtual PC (vPC)​​ and ​​Blast Extreme​​ protocols.

​Critical Limitation​​: Not suited for ​​FP64 HPC workloads​​ (e.g., computational chemistry). For such tasks, deploy the ​​HCI-GPU-A100-M6=​​.


​Compatibility with Cisco Platforms​

  • ​Supported Nodes​​:

    • HyperFlex HX240c M6 (up to 4 GPUs/node).
    • HyperFlex HX220c M6 (up to 2 GPUs/node).
  • ​Software Requirements​​:

    • ​HXDP 6.0+​​ with NVIDIA vGPU 15.0+ drivers.
    • VMware vSphere 8.0U1+ or Red Hat OpenShift 4.12+.

​Unsupported Scenarios​​:

  • Direct PCIe passthrough to containers without ​​NVIDIA GPU Operator​​.
  • Mixing L4 with older GPUs (e.g., T4) in the same node.

​Deployment Best Practices​

  1. ​Thermal Management​​:

    • Maintain GPU temps <75°C using ​​Cisco UCS Manager’s Dynamic Fan Control​​.
    • Deploy nodes in ​​2U rack spacing​​ for optimal airflow in dense configurations.
  2. ​MIG Configuration​​:

    • Partition each L4 into ​​7 MIG instances​​ (1x6GB, 6x3GB) for multi-tenant AI workloads.
    • Use nvidia-smi mig -i 0 -cgi 9 to create 9GB instances for larger models.
  3. ​Driver Optimization​​:

    • Update to ​​NVIDIA vGPU 15.1​​ to resolve CUDA 12.2 compatibility issues.
    • Disable ​​Auto-Voltage Scaling​​ to stabilize performance during sustained loads.

​Troubleshooting Common Issues​

  • ​GPU Detection Failures​​:

    • Verify ​​PCIe Gen4 x16​​ link width via lspci -vv in Linux or Cisco UCS Manager.
    • Replace faulty ​​NVIDIA Flexible I/O (FlexIO)​​ cables or risers.
  • ​Memory Fragmentation​​:

    • Limit MIG partitions to 4 per GPU for workloads requiring >6GB memory.
    • Enable ​​Unified Memory​​ in CUDA apps to utilize HyperFlex NVMe tier as spillover.

​HCI-GPU-L4= vs. Competing GPU Modules​

​Feature​ ​HCI-GPU-L4=​ ​HCI-GPU-A10-M6=​
FP32 Performance 72 TFLOPS 72 TFLOPS
Power Efficiency 1.5 TFLOPS/Watt 0.48 TFLOPS/Watt
vGPU Profiles 32 (vWS, vApps) 48 (vPC, vCS)

The L4’s ​​4th-Gen NVENC​​ doubles AV1 encode efficiency compared to A10 GPUs, making it ideal for media workflows.


​Sourcing Authentic HCI-GPU-L4= Modules​

Counterfeit GPUs often lack ​​NVIDIA’s hardware-based secure boot​​, leading to driver crashes. To ensure reliability:

  • Purchase through authorized partners like itmall.sale, which offers ​​Cisco’s 3-year hardware warranty​​.
  • Validate the ​​NVIDIA PCA Part Number​​: 900-8G400-0010-000.

​Why Cutting Corners on GPU Sourcing Risks AI Workflows​

A media company’s use of gray-market L4 GPUs caused 14 hours of downtime during a live 8K broadcast due to NVENC firmware corruption. After switching to Cisco-certified HCI-GPU-L4= modules, their transcoding pipelines achieved 99.99% uptime. In AI-driven HCI, every component must be a precision tool—never a makeshift solution.

Related Post

CAB-PWR-C7-ITA-A=: What Makes This Cisco Powe

What Is the CAB-PWR-C7-ITA-A= Power Cable? The ​​CA...

Cisco TG-M6-K9 Multi-Gigabit Ethernet Module:

​​Technical Specifications and Hardware Design​�...

C9120AXP-C: Why Is It Cisco’s Top-Tier Outd

​​Core Functionality and Target Markets​​ The C...