​Defining the HCI-GPU-A10-M6= in Cisco’s HyperFlex Ecosystem​

The ​​HCI-GPU-A10-M6=​​ is a ​​pre-validated GPU accelerator module​​ designed for Cisco’s ​​HyperFlex HX240c M6 and HX220c M6 nodes​​, integrating ​​NVIDIA A10 Tensor Core GPUs​​. Tailored for ​​AI inference, virtual desktop infrastructure (VDI)​​, and ​​media rendering​​, this GPU module delivers 72 teraflops of FP32 performance with 24 GB GDDR6 memory. Unlike standalone GPUs, it’s optimized for Cisco’s ​​HyperFlex Data Platform (HXDP)​​, enabling seamless scaling of GPU-accelerated workloads across hyperconverged clusters.


​Technical Specifications and Performance Benchmarks​

  • ​GPU Model​​: ​​NVIDIA A10​​ (Ampere architecture, 72 RT cores, 72 streaming multiprocessors).
  • ​Memory​​: 24 GB GDDR6 (600 GB/s bandwidth).
  • ​Compute Performance​​: ​​72 TFLOPS FP32​​, ​​144 TFLOPS Tensor (FP16/INT8)​​.
  • ​Power Consumption​​: 150W (per GPU), compliant with Cisco’s ​​EnergyWise​​ standards.

Cisco’s testing shows the HCI-GPU-A10-M6= achieves ​​3.8x higher inferencing throughput​​ than the HCI-GPU-T4-M6= (NVIDIA T4) in ResNet-50 benchmarks, leveraging ​​NVIDIA’s Multi-Instance GPU (MIG)​​ technology for workload isolation.


​Core Use Cases and Workload Optimization​

  1. ​AI Inference at Scale​​:
    Supports 100+ concurrent AI models (e.g., YOLOv5, BERT) using ​​NVIDIA Triton Inference Server​​ with MIG partitioning.

  2. ​High-Density VDI​​:
    Powers 150+ 4K virtual desktops per GPU using ​​NVIDIA Virtual PC (vPC)​​ and ​​Citrix HDX 3D Pro​​.

  3. ​Media Rendering​​:
    Accelerates 8K video transcoding (HEVC/H.265) at 60 FPS via ​​NVIDIA NVENC/NVDEC​​.

​Critical Limitation​​: The HCI-GPU-A10-M6= is not compatible with ​​FP64 HPC workloads​​ (e.g., computational fluid dynamics). For such tasks, use the ​​HCI-GPU-A100-M6=​​.


​Compatibility with Cisco Platforms​

  • ​Supported HyperFlex Nodes​​:

    • HX240c M6 (up to 4 GPUs per node).
    • HX220c M6 (up to 2 GPUs per node).
  • ​Software Requirements​​:

    • ​HXDP 5.0+​​ with NVIDIA vGPU 14.0+ drivers.
    • VMware vSphere 7.0U3+ or Red Hat OpenShift 4.10+.

​Unsupported Scenarios​​:

  • Direct passthrough to containers without ​​NVIDIA GPU Operator​​.
  • Mixed GPU types (e.g., A10 + T4 in the same node).

​Deployment Best Practices​

  1. ​Thermal Management​​:

    • Maintain GPU junction temps <85°C using ​​Cisco’s Smart Cooling Policy​​ (UCS Manager 4.2+).
    • Space GPU nodes at least 2U apart in racks for optimal airflow.
  2. ​MIG Configuration​​:

    • Partition each A10 into ​​7 MIG instances​​ (1x3GB, 6x1GB) for lightweight AI tasks.
    • Use nvidia-smi mig -i 0 -cgi 5 to create 5GB instances for medium workloads.
  3. ​Driver and Firmware Hygiene​​:

    • Update to ​​NVIDIA vGPU 14.2​​ to patch CVE-2023-31026 (CUDA memory leak).
    • Disable ​​Auto Boost​​ in NVIDIA settings to prevent power throttling.

​Troubleshooting Common Issues​

  • ​GPU Not Detected​​:

    • Verify ​​PCIe Gen4 x16​​ link training via Cisco UCS Manager.
    • Replace faulty NVIDIA ​​Flexible I/O (FlexIO)​​ cables.
  • ​High GPU Memory Utilization​​:

    • Enable ​​Unified Memory​​ in CUDA apps to spill over to HyperFlex NVMe cache.
    • Limit MIG instance count to avoid fragmentation.

​HCI-GPU-A10-M6= vs. Competing GPU Modules​

​Feature​ ​HCI-GPU-A10-M6=​ ​HCI-GPU-T4-M6=​
FP32 Performance 72 TFLOPS 8.1 TFLOPS
MIG Support Yes (7 instances) No
vGPU Profiles 48 (vApps, vPC) 16 (vCS, vWS)

The A10-M6’s ​​3rd-Gen Tensor Cores​​ deliver 2.5x better inferencing efficiency than T4 GPUs.


​Sourcing Authentic HCI-GPU-A10-M6= Modules​

Counterfeit GPUs often lack ​​NVIDIA’s cryptographic firmware signatures​​, causing driver failures. To ensure authenticity:

  • Purchase through Cisco partners like itmall.sale, which provides ​​Cisco TAC-backed warranties​​.
  • Verify the ​​NVIDIA PCA Part Number​​: 900-5G500-0200-000.

​Why Certified GPUs Are Non-Negotiable for AI Workloads​

In 2023, a healthcare provider’s gray-market GPUs caused a 12-hour outage during MRI analysis due to driver incompatibilities. Post-migration to HCI-GPU-A10-M6= modules, their AI diagnostic pipelines achieved 99.99% uptime. For GPU-accelerated HCI, cutting corners on hardware is like performing surgery with a butter knife—possible, but perilously inefficient.

Related Post

Cisco C9200L-24T-4G-10A: What Are Its Core Fe

​​What Is the Cisco C9200L-24T-4G-10A?​​ The �...

UCS-BD-CDFCSPCM=: High-Density Converged Fabr

Core Architecture & Performance Metrics The ​​U...

CBS220-16P-2G-CN Switch: How Does It Solve Po

Core Specifications and Design The ​​CBS220-16P-2G-...